Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 16(6): 3114-3140, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33893470

RESUMO

Virus neutralization assays measure neutralizing antibodies in serum and plasma, and the plaque reduction neutralization test (PRNT) is considered the gold standard for measuring levels of these antibodies for many viral diseases. We have developed procedures for the standard PRNT, microneutralization assay (MNA) and pseudotyped virus neutralization assay (PNA) for severe acute respiratory syndrome coronavirus 2. The MNA offers advantages over the PRNT by reducing assay time, allowing increased throughput and reducing operator workload while remaining dependent upon the use of wild-type virus. This ensures that all severe acute respiratory syndrome coronavirus 2 antigens are present, but Biosafety Level 3 facilities are required. In addition to the advantages of MNA, PNA can be performed with lower biocontainment (Biosafety Level 2 facilities) and allows for further increases in throughput. For each new vaccine, it is critical to ensure good correlation of the neutralizing activity measured using PNA against the PRNT or MNA. These assays have been used in the development and licensure of the ChAdOx1 nCoV-19 (AstraZeneca; Oxford University) and Ad26.COV2.S (Janssen) coronavirus disease 2019 vaccines and are critical for demonstrating bioequivalence of future vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Testes de Neutralização/métodos , SARS-CoV-2/imunologia , Ad26COVS1 , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , ChAdOx1 nCoV-19 , Humanos , Testes de Neutralização/economia , Fatores de Tempo
2.
Nat Commun ; 12(1): 1260, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627662

RESUMO

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Animais , Modelos Animais de Doenças , Feminino , Imunidade Celular/fisiologia , Interferon gama/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Pandemias , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
3.
Nat Commun ; 12(1): 81, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398055

RESUMO

There is a vital need for authentic COVID-19 animal models to enable the pre-clinical evaluation of candidate vaccines and therapeutics. Here we report a dose titration study of SARS-CoV-2 in the ferret model. After a high (5 × 106 pfu) and medium (5 × 104 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals, however, only 1/6 ferrets show similar signs after low dose (5 × 102 pfu) challenge. Following sequential culls pathological signs of mild multifocal bronchopneumonia in approximately 5-15% of the lung is seen on day 3, in high and medium dosed groups. Ferrets re-challenged, after virus shedding ceased, are fully protected from acute lung pathology. The endpoints of URT viral RNA replication & distinct lung pathology are observed most consistently in the high dose group. This ferret model of SARS-CoV-2 infection presents a mild clinical disease.


Assuntos
COVID-19/imunologia , Modelos Animais de Doenças , Furões/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Relação Dose-Resposta a Droga , Feminino , Pulmão/imunologia , Pulmão/patologia , RNA Viral/isolamento & purificação , SARS-CoV-2/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia , Eliminação de Partículas Virais/efeitos dos fármacos , Eliminação de Partículas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...